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Abstract

We apply percolation theory to financial modeling through the Cont-Bouchaud
model. The project deals with the complete implementation in Java and testing of
this model. We also derive major results and completely describe the statistics of the
model.

A significative part treats the implementation of an algorithm able to efficiently find
clusters in a lattice. We then present some results from percolation theory, and then
discuss and implement the Cont-Bouchaud model. The results we find from percolation
theory are in accordance with the literature. We find that the Cont-Bouchaud model
is capable of generating results distributed as both a Gaussian and a power law, in
function of the activity probability. The exponents found for the power law are also in
accordance with the literature. A final part is dedicated to presenting and discussing

the implementation of the model in Java.

A copy of this report and all the code written for the project can be found on my website:

http://www. ddeville.me
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1 Introduction

During the past twenty years, there has been increasing interest from banks and financial
firms in general for models able to represent asset price fluctuations [11]. These models were
particularly needed for risk management purposes. Quantitative analysts originally from
Mathematics or Physics university departments have been flooding the financial job market.
This was mainly due to the fact that since the 1987 financial crisis the shape of the market
has changed [1] [9] and particularly the distribution of returns that were until then assumed
to be Gaussian [2] [23] nowadays clearly display fat tails [9]. The appearance of fat tails in
the distribution of returns was the evidence that some risks inherent in asset prices were not
taken into account if we assumed that the distribution of returns was Gaussian [1] [9]. The
most famous model for option pricing, the Black-Scholes model created in 1973 [4], initially
assumed that the asset price followed a log-normal distribution. It has widely been showed
that this model is not consistent with real data [12]. Given the impossibility of representing
financial returns with Gaussian models, many authors showed interest to the subject and
many models have been presented to try to represent better asset price returns and particu-

larly defining a new distribution for them.

Many approaches for modeling changes in asset prices traded on a market have been pre-

sented [18]. Some focus on the price itself assuming it follows a well-known stochastic process
(such as the log-normal [4], but also some Lévy jump process [13] [21] or even mean-reverting
processes [14]), others add a stochastic variance (such as stochastic volatility models [15] or
GARCH models [5]).
Another approach is to focus on the agents composing the market and try to understand
their behaviours, actions and interactions, in order to measure their effect on the system as a
whole: this approach is called agent-based modeling [22]. In agent-based financial modeling,
we are particularly interested in summing up individual demand and supply in order to get
the global equilibrium directly proportional to the price change.

In agent-based modeling, a lot of models have been proposed (for a complete review of these



models see [22]). We decide to focus on the Cont-Bouchaud percolation model for its sim-

plicity and its efficacy [22].

The Cont-Bouchaud model is based on percolation theory, we will first introduce this.
Percolation theory is the study of the behavior and statistics of clusters on lattices. Suppose
we have a large square lattice where each cell can be occupied with probability p and empty

with probability 1 — p. Examples of such occupied lattices are shown in Figure 1.

Figure 1: Examples of occupied 10x10 lattices with an occupation probability p = 0.2 (left)
and p = 0.7 (right). Grey cells are defined as occupied.

Each group of neighbouring occupied cells forms a cluster. Neighbours are defined as
cells having a common side but not those sharing only a corner as depicted in Figure 2 (thus
a neighbour is a cell at the top, bottom, left or right of the current cell, but not on the
diagonal). Tt is important to understand that the occupation of the cells is random and
each occupied cell is occupied independently of the status of its neighbours. The number of
clusters in the lattice, the size of each one and their distribution in the lattice are important

topics in percolation theory.



Figure 2: Definition of a neighbouring cell in the lattice. Assume the red cell is the current

cell: its neighbours are the four grey cells on top, bottom, left and right.

In this project, we first discuss an algorithm for finding clusters in a lattice since it
represents the keystone for discussing and implementing percolation theory. We then present
and test some results from percolation theory. Finally, we introduce the Cont-Bouchaud

model and discuss some results. The final section describes implementation.



2 Implementing the cluster-finding algorithm

As we will explain further below, running the model depends on correctly identifying all
clusters on a lattice. This is a non-trivial operation and indeed, most of the efficiency of
the whole model directly depends on the efficiency of the cluster-finding algorithm. In this
setting, being able to compute the cluster sizes for each given lattice in a very small amount
of time was a prerequisite for being able to study the model more in depth. Thus, a large
amount of time has been devoted to designing a good cluster-finding algorithm. We also have
to decide on a good data structure to store the clusters. We will need to get cluster sizes quite
often while implementing the model, so a fast access to them will improve the efficiency of
the whole model. Since checking if a lattice percolates means checking if a cluster spans the
whole lattice from top to bottom or side to side, the quality of the cluster-finding algorithm
could also be measured by its capability of detecting some unusual percolating clusters as the
one depicted in Figure 3. It is an interesting subject since, while writing and modifying the
code, it often seems that we will always find a new cluster shape that our algorithm cannot
detect! However, the concordance between the value we found for p. and the value usually
found in the literature [24] is strong evidence that our algorithm is capable of finding all
those clusters (see section 3).

The principle behind such an algorithm is to count the cluster number in the lattice and
to store the size of each cluster. We thus have to span the whole lattice from top-left to
bottom-right and assign each cell to a cluster.

For each occupied cell, we check if the cells at the top and left are occupied. We then have

four possibilities:
1. If both cells are empty, create a new cluster for the current cell.

2. If only one cell is occupied, the current cell belongs to the cluster this occupied cell

belongs to.

3. If both cells are occupied and belong to the same cluster, the current cell belongs to

that same cluster.



Figure 3: Example of a lattice pattern displaying an odd percolating spanning cluster that

the cluster-finding has to be able to recognize

4. When both cells are occupied but each one belongs to a different cluster, the current
cell will create a link between these two clusters. We have to find an easy way of linking

these two clusters while setting the current cell to one of them.

The first idea we had was to implement a proper algorithm based on Java Collections.
Each cluster was represented as an ArrayList containing cell objects. Each time we decided
a cell belonged to a cluster, we had to add this cell to the corresponding cluster ArrayList.
The problem was that each time we wanted to check if a cell belonged to a cluster, we had to
check and span all ArrayLists in order to find the cell. Since for large lattice sizes, clusters
can become quite large, this method was slow and definitely not scalable.

We then decided to look at the literature and found there were two famous algorithms that
already tried to solve this problem: the Leath algorithm [20] and the Hoshen-Kopelman al-
gorithm [16].

The Leath algorithm is based on recursions and while quite efficient, it is not fast enough for

our purpose. Given its efficiency, we focus on the Hoshen-Kopelman algorithm.



2.1 The Hoshen-Kopelman cluster-finding algorithm

The Hoshen-Kopelman algorithm is based on the well-known union-finding algorithm. It
works by assigning a label to each cluster. Then, if we have to link two clusters, we create
a union between both labels and set the cell as the lowest of the two labels. When we span
the lattice a second time, we find the unions and update the lattice. An example of the

Hoshen-Kopelman algorithm performed on a 6x6 lattice is shown in Figure 4.

Union(2,3) Find(3) = 2
Union(5,6) Find(6) = 5
Union(7.8) Find(8) = 7

Figure 4: The two-steps Hoshen-Kopelman algorithm performed on a 6x6 lattice. The grey
cells are occupied. The first step consists in spanning the lattice once and assigning cluster
labels to each occupied cell. If a link between two clusters has to be made, we create a union
relation between these two cluster labels. A second step consists in spanning the lattice a
second time and finding and updating the cluster labels (to insure each cluster is represented

by only one label).

The implementation of the Hoshen-Kopelman algorithm is as follows:
We first span the lattice once. Each time we find an occupied cell, we check the neighbors

at the top and left of the current cell. We have then four possibilities:

10



1. Both cells are empty: we create a new cluster label and set it to the current cell

2. Only one cell is occupied: we set the cluster label of the occupied cell to the current

cell

3. Both cells are occupied and have the same cluster label: we set this cluster label to the

current cell

4. If both cells are occupied but have distinct cluster labels, we set the smallest to be
the current cell cluster label and we add the union between both cluster labels as a
new entry into a labels HashTable where the key is defined as the largest label of the
two and the corresponding value is the smallest one. If the key already exists in the

HashTable, we have to use the find function. We explain this further below.

In the labels HashTable, when a value is equal to its key, it means the cluster that the key’s
label represents is not linked to any other cluster. A label of the type V(n) = n is called
good label (while a label of the form V(n) = m is called a bad label). We thus need a find
function able to tell us the smallest good label each bad label is linked to.
The find function works as follows: given a bad cluster label, we go recursively through each
union in the labels HashTable (of the type V(n) = m) until the key is equal to the value
meaning this is the smallest good label the current label is linked to.
The second step of the algorithm consists of spanning the whole lattice a second time and
applying this find function to the cluster label of each occupied cell we encounter. We can
now be sure that each cluster in the lattice is represented by only one cluster label and this
label is the smallest good label we can find.
Doing so, we manage to compute the algorithm and find clusters for a 1000x1000 lattice in
around 800ms while a 500x500 lattice in 200ms.
Pseudocode for the algorithm is shown in Listing 1 and pseudocode for the find function is
shown in Listing 2.

The best approach for testing the Hoshen-Kopelman algorithm is to deterministically

draw clusters in lattices, then run the algorithm and see how it behaves and if it gives the

11
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For i = 1 To size(lattice)
For j = 1 To size(lattice)

get current cell(i,j) ;

check top cell(i—1,j) ;

check left cell(i,j—1) ;

If (top and bottom cells are empty)
Then create new cluster label and set to current cell ;

Else If(just one cell is occupied)
Then set the occupied cell cluster label to the current cell

Else If(both cells have the same cluster label)
Then set this cluster label to the current cell ;

Else If(both cells are occupied but have distinct cluster label)
Then
{

assign smallest cluster label to the current cell ;
create a union relation V(n)=m in the labels HashTable ;

}

End

End
End

Listing 1: Hoshen-Kopelman algorithm for finding clusters in a site lattice (Pseudocode)

labels < labels HashTable ;

labelNum «— initial bad label ;

While(value matching the key labelNum in labels # labelNum)
labelNum <« value matching the labelNum key in labels ;

End

Return labelNum ;

Listing 2: The find method used in the Hoshen-Kopelman algorithm (Pseudocode)

12
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Figure 5: Lattices with different cluster shapes used to test the efficacy of the cluster-finding

Hoshen-Kopelman algorithm

lattice a |b |c |d |e |f g |h
percolation? yes | yes | no | no | yes| yes | no | yes
number of clusters || 1 1 7 125 |1 1 1 1

Table 1: Results of the test of the efficacy of the cluster-finding Hoshen-Kopelman algorithm

on the lattices from Figure 5

results we expect. By repeatedly designing lattices with unusual cluster shapes (percolating
or not) and testing how well the algorithm finds them and determines their size, we can
perform an efficient testing procedure. Examples of tested lattices and the results of the

applying algorithm on them are shown in Figure 5 and Table 1.

13



3 Results from percolation theory

After having discussed an efficient algorithm for finding clusters in a lattice, we can now

present some results from percolation theory, implement and test them.

It is important to note that, in the following sections, in order to get the results, we
often proceed computing the ensemble average. An ensemble consists of a large number of
experiments of a system, considered all at once, each of which represents a possible state
that the real system might be in. In our case, we can consider an ensemble as a large number
of returns generated by the model for a given lattice. Finally, we take an average of a large
number of ensembles. Even if the ensemble average is dependent on the ensembles chosen, if
we consider a large number of ensembles, the value of the ensemble average should stabilize

and tend to the real value.

3.1 The critical probability

Clearly, the expected size of a cluster of cells is a function of p. As p is increased, we would
expect larger clusters and for some probability we expect to find clusters that span the entire
lattice from one side to the other. This is referred to as the critical probability p.. Assuming
the size of the lattice is infinite, for a probability p below p., there cannot be any cluster
that spans the whole lattice and for a probability p above p. there is one cluster that spans
the whole lattice. The exact value of p. depends on lattice topology [25], as bonds and sites
lattices. Here we concentrate on sites lattices.

We can find this critical probability by numerical simulation. We compute a number
of experiments for each given probability on a lattice. For each experiment, we check how
many lattices contain a spanning cluster. Some pseudocode illustrating this routine is listed

in Listing 3.

As the size of the lattice increases, the interval of probabilities generating a spanning

cluster narrows and it is then easier to find the critical probability. In Figure 6 we plot the

14
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Figure 6: Looking for the critical probability. The x-axis is the probability p. The y-axis

is the number of lattices percolating (containing a top-bottom spanning cluster) out of a

sample of 1,000 lattices. The experiment is run on lattices of size (top-left to bottom-right)

10 (a), 20 (b), 50 (c), 200 (d), 1,000 (e) and 4,000 (f).
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For ¢ = 1 To 100
prob «— /100 ;
counter «— 0 ;
For j = 1 To number of experiments
generate a new lattice with probability prob ;
check if the lattice percolates ;
If(lattice percolates)
increment counter by one ;
End
Print counter ;

End

Listing 3: Algorithm to find the critical probability

results of the numerical simulations we have performed. Taking a 0.01 step between each
probability, we clearly see that the critical probability is between 0.59 and 0.60. Taking a
smaller interval (0.001) between 0.59 and 0.60, we find that the critical probability is between
0.592 and 0.593. Going ahead, we find a critical probability of 0.5927 4 10~* which is in good
agreement with the value found in the literature (p. = 0.5927464) [25].

3.2 Number of clusters

The number of clusters in the lattice and the size of each one will be important in the defi-
nition of the Cont-Bouchaud model. We are therefore interested in finding the distribution
and sizes of clusters and particularly the number of clusters present in the lattice for a given
probability. We thus compute the number of clusters in lattices of various sizes for a range
of probabilities between 0 and 1. Listing 4 describes an algorithm for generating cluster

distribution data.

In Figure 7 we plot the number of clusters for each probability and for each lattice
size. In order to compare the lattices of different sizes, we scale the number of clusters in
each lattice dividing it by the square of the lattice size L. We can see that the result is
approximately independent of the size of the lattice. The probability that generates more

clusters is 0.27 £ 0.01 which is the value usually found in the literature [29].

16
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For i = 1 To 100

prob «— /100 ;

counter «— 0 ;

num < number of experiments ;

For j = 1 To num
generate a new lattice with probability prob ;
get the number of clusters in this lattice ;
counter <« counter + number of clusters ;

End

Print counter/num ;

End

Listing 4: Algorithm to find the probability that insures the maximum number of clusters

Evolution of the number of clusters in function of the probability p for diferent lattice sizes
014 T T T T T T T T T

0.1

=
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=
=
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Mumber of clusters [ attice Si292)
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f=]

ooz

i 0.1 0.z 0.3 0.4 ns 0.6 0z 0.8 09 1
Probabilite p

Figure 7: The number of clusters in the lattice for each probability. Experiments are per-
formed for various sizes of the lattice. For each lattice size, we used a sample of 5,000
experiments (for sizes 32 and 64), 2,000 experiments (for size 128), 200 experiments (for size

256 and 512) and 50 experiments (for size 1,024 and 2,048).

17




3.3 The cluster size distribution

In order to determine the cluster size distribution, we simulate 10,000 experiments on a
501x501 latttice for probabilities ranging from 0.1 to 0.6. We then take an average of occur-
rences of each cluster size. The distribution of the cluster sizes follows a power law distribution
[25]. A power law distribution describes a special relationship where the frequencies decrease
very slowly as the sizes of the event increase.

In Figure 8 and Figure 9, we plot the cluster size distribution for various probabilities
(0.1,0.2, 0.3, 0.4, 0.5 and 0.6). Notice that when using a probability p = 0.6 > p.., as assumed
in [27] we do not take into account the percolating cluster (this special cluster that spans
the lattice from one side to the other and that theoretically, assuming the size of the lattice
is infinite, would have an infinite size) in the plotting of the distribution. Then, for each

probability, we fit the distribution with the following power-law

flw) = az" (1)

where a and £ are constant, x is the cluster size and k is called the scaling exponent.

All the plotting was performed using Matlab ! and some basic code used for obtaining
histograms is listed in Listing 5.

Power laws were fitted to the empirical data using the Ezyfit 2 Matlab toolbox.
We obtain good fits for all probabilities. The R-squared values are indeed close to 1 for all
probabilities (see Figure 8 and Figure 9 for the precise values of the R-squared).
On the right-hand side of the figures, we plot the same distributions but on a log-log scale.

We notice that if we take the logarithm on both sides of the power-law equation

log(f(z)) = log (az") (2)
= log(a) + log(z") (3)
= log(a) + klog(z). (4)

thttp:/ /www.mathworks.com
Zhttp:/ /www.fast.u-psud.fr/ezyfit
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Figure 8: Cluster sizes distribution among a 501x501 lattice for various cell occupancy prob-
abilities: 0.1 (a and b), 0.2 (c and d) and 0.3 (e and f). On the left-hand side, we plotted
the distribution on a linear scale (blue “plus” signs) and we fitted a power law to it (orange

line). On the right-hand side, we plotted the same empirical distribution on a log-log scale.
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Figure 9: Cluster sizes distribution among a 501x501 lattice for various cell occupancy prob-
abilities: 0.4 (a and b), 0.5 (c and d) and 0.6 (e and f). On the left-hand side, we plotted
the distribution on a linear scale (blue “plus” signs) and we fitted a power law to it (orange
line). On the right-hand side, we plotted the same empirical distribution on a log-log scale.
In the case p = 0.6, since p > p. the critical probability, there is formation of an “infinite”

spanning cluster. This was removed when plotting the clusters distribution.
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S = ’output’ ;
n = 100 ;
dim = 200 ;
xfinal = zeros(1,dim) ;

yfinal = zeros(1,dim) ;

for i=1:n
num = int2str(i) ;
x = [S num ’.txt’] ;
fid = fopen(x,’rt’) ;
a = fscanf(fid , "%f’) ;
a = abs(a) ;
%a = sqrt(a) ;
[y,x] = hist(a,dim) ;
yfinal = yfinal + y ;
xfinal = xfinal + x ;

end

yfinal = yfinal/n;
xfinal = xfinal/n ;
loglog (xfinal , yfinal , ’+)
%plot (zfinal ,yfinal,’+ )

Listing 5: Matlab code for getting the histogram graphs

Then
log(f(z)) = klog(x) + log(a)

()

the equation becomes a linear relationship where k is the slope. Thus the power law curve

becomes a straight line on log-log plot. So, looking for the exponent of a power-law equation

reduces to looking for the slope of an elementary linear equation.

A similar property is found for exponential functions where

f(z) = ae’™.

Taking a logarithm on both sides leads to

log(f(z)) = log (aebx)

= log(a) + bx




Then
log(f(x)) = bz + log(a) (9)

and the equation is again a linear relationship where b is the slope. Thus the exponential
function curve becomes a straight line on log-log plot.

These properties of both the power law and the exponential function are useful since they
facilitate the fitting, reducing it to a classic OLS.

For a probability p < p., the distribution of the cluster sizes looks pretty much like an expo-

nential distribution while when p > p,, it is clearly a power-law [22], [25].
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4 The Cont-Bouchaud percolation model

Now we are capable of generating lattices with randomly occupied cells and compute the
cluster number and sizes, we can apply this to financial modeling through the Cont-Bouchaud

model.

4.1 Why percolation theory in financial modeling?

In agent-based financial modeling, we are looking for a way to represent each actor (such as
a trader or any kind of investor) in the system on its own (at the micro scale) and a way to
sum up the effects of each actor in order to have a scaled vision of the whole system (at the
macro scale).

In this setting a cell represents a trader, a lattice represents the whole market and clus-
ters represent groups of investors making joint decisions in the market. Percolation theory
provides a good framework for agent-based financial modeling. The lattice allows different
patterns for the market, different locations for each trader, and by the formation of clusters
different centers of interest where traders interact, exchange information and end taking sim-
ilar decisions in their investment.

Percolation theory is both a simple setting for a model but also a rich one, offering many

possibilities for financial modeling.

4.2 The model

The main purpose of the Cont-Bouchaud model is to investigate the phenomenon of herding
between traders. For example, traders working in the same bank may have similar opinions
about the market due to communication between themselves. Hence, the model assumes
that cells (traders) that are close enough to belong to the same cluster share the same
opinion about the market and make the same moves. Then, neighbor cells form clusters that
represent traders making joint decisions. This is how the Cont-Bouchaud model represents
herding phenomena in the financial markets [10].

Each cluster can decide to buy with probability a, sell with probability a or sleep with
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probability 1 — 2a. Thus, a small @ means a few trades at each time interval while a large
a (close to its maximum value 0.5) means that a large fraction of the traders participates in
the market. Traders in clusters behave identically, so the quantity purchased at each time
step by each cluster is directly proportional to the cluster size.

If the cluster buys, it buys a quantity ¢”¥ proportional to the cluster size and if it sells,
it sells a quantity ¢* proportional to the cluster size. Then, at each time interval, the

difference between supply and demand is given by the following formula

A=y (Z LD cbfell) (10)

where A\ is a scaling component representing the excess demand needed to move the price by
one unit.
The logarithm of the price is then supposed to change proportionally to A [6], [7], [10], [24],
[30]

log(P) = A (11)

In this way, the change in price is proportionally determined by the difference between supply

and demand.

4.3 Generating time-series

Using the Cont-Bouchaud model in order to generate returns, we can then easily generate
prices time-series. Figure 10 shows two time-series generated with the Cont-Bouchaud model

for two different values of the activity probability a.

4.4 The distribution of returns generated by the Cont-Bouchaud model

We are particularly interested in the distribution of the returns generated by the Cont-
Bouchaud model. We know [9] [10] that in the market, given the presence of bubbles and
the risk of crashes (both characterized by sharp up or down price fluctuations) the returns

are not Gaussian but follow a fat-tailed distribution (where the fat tails actually model these
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5 Simulation of 2 ime-series with CB medel, 2=0.0001, p=04, L=101x101, 30,000 steps Simulation of a time-geries with 2 CBmedsl, a=0.2, p=0.4, L=101x101, 30,000 steps

Frice
Frice

Time w10"

Figure 10: Two time-series generated with the Cont-Bouchaud model with the following

parameters: lattice size=101x101, p=0.4, a=0.0001 (left) and a=0.2 (right) for 30,000 steps.

sharp fluctuations). Indeed, the fat tails in the distribution are the product of the additional

risk in financial prices implied by the fear of crashes and bubbles.

One interesting characteristic of the Cont-Bouchaud model is the possibility, by selecting
different parameters, of generating returns distributed differently. For a very small activity
probability a, at each time step, only one (or a few) cluster trades. It follows that the dis-
tribution of the returns scales as the well-known [25] cluster size distribution of percolation
theory (see section 3) [27], that is to say an exponential distribution or a power law. However,
when the activity probability a is increased, at each time step, many clusters trade simul-
taneously. The returns are then proportional to the sum of each cluster size (characterizing
the size of the trade). The Central Limit Theorem [3] states that the sum of a sufficiently
large number of independently generated random numbers will be approximately Normally
distributed. From this, we can argue that for a — 0.5 the distribution of returns will tend
to a Gaussian.

We are now analyzing the distribution of returns in both regimes (when 0.1 < a < 0.5 and

when a < 0.1).
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a Mean | St. dev. | Skewness | Kurtosis R?
0.50 || -0.5574 | 4,902.00 | 0.00065 | 2.6486 | 0.99920
0.40 || -1.4762 | 4,360.20 | 0.00063 | 2.6884 | 0.99939
0.30 || 1.6341 | 3,814.70 | -0.00120 | 2.7709 | 0.99982
0.25 || 0.0368 | 3,429.20 | -0.00074 | 2.8239 | 0.99994
0.20 || -1.0861 | 3,103.10 | 0.00063 | 2.9105 | 0.99994
0.16 || 0.8861 | 2,766.10 | 0.00075 | 3.0087 | 0.99995
0.10 || -0.5435 | 2,154.20 | -0.00045 | 3.3320 | 0.99810
0.05 || 0.4659 | 1,546.60 | 0.00120 | 4.2486 | 0.99385
0.01 || -0.0505 | 707.95 | 0.00039 | 12.0436 | 0.99689

Table 2: Results from the Gaussian distribution fitting on the experimental returns generated

with the Cont-Bouchaud model.

4.4.1 The distribution of returns for 0.1 <a <0.5

In Figure 11, we plot the distribution of returns generated with the Cont-Bouchaud model
(summing up over all clusters generated by a lattice for p comprised between 0.01 and 0.59)
for an activity probability a equal to (from top-right to bottom-left) 0.5, 0.4, 0.3, 0.25, 0.2,
0.1, 0.05 and 0.01.

We observe that for a value of the probability a comprised between 0.1 and 0.5 the distri-
bution of the returns seems to look pretty much like a Gaussian distribution, however, when
a < 0.1, we also clearly see that the distribution is no longer Gaussian. The results from the
fit are summarized in Table 2. We can clearly see that while for a large value of a (a > 0.1)
the regression curve is a good fit to the data (given the value of R? almost equal to 1) whereas

the fit is a lot worse for values of a < 0.1 (the value of R? is lower).

In order to characterize better its distribution, we now consider the four first moment of

the empirical data generated with the Cont-Bouchaud model.
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Figure 11: Distribution of returns generated with the Cont-Bouchaud model for various
values of the probability a (from top-left to bottom-right: 0.5 (a), 0.4 (b), 0.3 (c), 0.25 (d),
0.2 (e), 0.1 (f), 0.05 (g), 0.01 (h)).

orange curve is the Gaussian distribution fit

The blue crosses are the experimental data while the
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Figure 12: Evolution of the standard deviation (left) and variance (right) in function of the

probability a.

Mean, p
We clearly see that in all cases the mean of the returns is 0 4+ 1.5, which is a characteristic of
the Cont-Bouchaud model since positive and negative returns have exactly the same proba-

bility of occurring and in the same amount.

Standard deviation, o

In Figure 11 and Table 2 we see that when the value of the probability a increases, the stan-
dard deviation also increases. This is due to the fact that a larger value of the activity a in the
market leads to a greater number of actors participating in the market, synonym of greater
supply and demand and thus larger variance of returns. We are particularly interested in
knowing exactly how the standard deviation behaves when the the probability a increases.
In Figure 12, we plot the value of the standard deviation and the variance. In order to get
these values, we generate 1,000 steps of returns generated with the Cont-Bouchaud model
using a lattice of size 101x101. We then compute the standard deviation out of these data.
Performing this 50 times, we get 50 different values of the standard deviation out of which
we compute the average to get the final value of the standard deviation for a given a. We

perform this for all values of a in the range 0.01 — 0.50 with an increment of 0.01 between
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each value of a.

The shape of the curve representing the evolution of the standard deviation as a function of a
looks like drawn from a square-root function and, indeed, when we try to fit it with a power
law equation of the type y = ba" + ¢, we find a value of the exponent n very close to 0.5
(exactly n = 0.496 £ 1072), and the value of ¢ being insignificantly small (¢ = —23.5 + 107!
while the range of the function is [700,5000]). We can then assume that the standard devia-
tion increases with the probability a as the function y = b+/a.

Given that the variance is simply the square of the standard deviation, if we assume the
standard deviation is driven by a square-root equation, the variance should be a linear equa-
tion. And indeed, looking at the right-hand side of Figure 12, we clearly see that the variance
plot is a linear equation. When fitting the empirical data with a linear equation of the form
y = ba + ¢, we get an almost perfect fit and again the value of ¢ is insignificantly small.
The linear equation is thus of the form y = ba. We can thus conclude that the variance
of the returns generated with the Cont-Bouchaud model increases linearly with the activity

probability a.

Skewness, s
Similarly, as referred in Table 2, the value of the skewness (a measure of the symmetry of
the distribution) is almost equal to 0 for any value of the probability a (s = 0 & 1073 for
any a). This is in accordance with a Gaussian distribution (the Gaussian distribution, being

symmetric by definition, has a skewness of 0).

Kurtosis, k
Another important characteristic is the value of the kurtosis changing as a function of a. We
know that a Gaussian distribution has a kurtosis of 3. A perfect fit between the empirical
data and a Gaussian distribution should also display a kurtosis of 3. Looking at the fit
between the empirical data and the Gaussian distribution in Figure 11, we see that for large
values of a, the empirical data display smaller tails than the Gaussian distribution (and thus

a lack of kurtosis) and for small values of a, the empirical data display fat tails (and thus
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Figure 13: Evolution of the kurtosis in function of the probability a.

an excess of kurtosis). We can confirm this feature looking at the Table 2: for a value of
a < 0.10, the empirical data display a kurtosis greater than 3 (which characterizes an excess
of kurtosis); similarly, for a value of a > 0.20, the value of the kurtosis is less than 3 (which
characterizes a lack of kurtosis).

We are interested in the evolution of the kurtosis as a function of the activity probability
a and particularly in the value of a that gives a kurtosis of 3, i.e. describing a Gaussian
distribution (assuming that the skewness is 0). In Figure 13, we plotted the evolution of the
kurtosis in function of the activity probability a (with values taken in the range 0.01-0.50).
The plot of such kurtosis evolution clearly has the shape of a power-law curve. This feature
can be confirmed looking at Figure 14 which shows the same data on a log-log scale graph.
We can then fit the empirical data to a power-law equation. We get a good fit and find a
value of the exponent n close to —1 (exactly n = —1.0068). Assuming the power law equation
has the following parameters y = ba" + ¢, we can thus assume that the equation describing
the kurtosis is function of the activity probability a is y = bi +c.

We get a good fit (value of R? very close to 1). We can therefore assume this fitted power

30



o Evolution of the kurtosis in function of the probakbility a (log-log scale)

kurtosis
=
1

oy
+

T -

1 1 1 1 1 Ll 1 1 1 L 1 PR
10° 1’ 10
Probakility a

Figure 14: Evolution of the kurtosis in function of the probability a.

law equation describes the data well. We get the following values for the parameters

b = 0.076+1073
n = —1.007+1073

c = 252041073

As we mentioned earlier, the empirical data display an excess of kurtosis for values of a below
a value a* € [0.10,0.20] and a lack of kurtosis above a*. Since we know the value of both
the parameters of the equation and assuming that y* = 3 being the value of the kurtosis
for a Gaussian distribution, we can easily get the exact value of a* insuring a kurtosis of 3

assuming that the power law equation can be rewritten as

y = ba"+c (12)
y;C = (13)
nloga = log y—c) (14)

log (¥=¢
loga = o8 (5°) (15)
n
log (L=<
a*t = exp(og( b )> (16)
n



Substituting the fitted values into equation (16), we obtain
a* =0.1636 £ 10~

We then assume that for a value of a < 0.1636, the returns generated with the Cont-
Bouchaud model display an excess of kurtosis and then describe a fat tailed distribution
whereas for a value 0.1636 < a < 0.50, the returns display a lack of kurtosis. The returns
generated with a value a* = 0.1636 should give follow a distribution with, as the Gaussian

distribution, a kurtosis of 3.

4.4.2 The distribution of returns for a < 0.1

Looking at Figure 11, we clearly see that for a small value of the probability a (a < 0.1), the
distribution presents an excess of kurtosis (fat tails with much more values very close to the
mean than in a Normal distribution) and can be recognized as an exponential distribution
or a power law.

In Figure 15 we thus plotted on a log-log scale graph the distributions defined by the returns
generated by the Cont-Bouchaud model with a value of the activity probability a equal to
0.0001, 0.0005, 0.001, 0.005, 0.01 and 0.05. Assuming the distribution is a power law, we find
its exponent from the gradient of a straight line fit on a log-log plot. In Table 3, we show
the slopes found for each activity probability a. We can note that, for all probabilities, we
always find an exponent of 2.5 & 5 x 1072, precisely contained between 2.0 and 3.0, which

seems to be the value usually found in the literature [22].

a 0.0001 | 0.0005 | 0.001 0.005 0.01 0.05
slope || -2.4680 | -2.4952 | -2.5290 | -2.5484 | -2.4001 | -2.1960

Table 3: Slope of the power curves

Moreover, we know from the literature [26], that the returns for a small a follows an

exponential distribution if p < p. whereas it follow a power law if p = p..
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Figure 15: Distribution of returns generated with the Cont-Bouchaud model for different
values of the activity probability a (from top-left to bottom-right: 0.0001, 0.0005, 0.001,
0.005, 0.01 and 0.05). The generated clusters have been summed up from all the range of
occupancy probabilities p between 0.01 and 0.59. An average out of 100 experiments of

100,000 steps each on 101x101 lattices have been computed.
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Figure 16: Comparison of the returns distribution when p < p. (left) vs. p = p. (right). The
other parameters are the same in both cases (100,000 experiments, lattice size 501x501 and

a = 0.005).

To verify this, in Figure 16, we plot two experimental distributions both generated from
a Cont-Bouchaud model taken on a 501x501 lattice with an activity probability a = 0.005
but one (left) for a probability p = 0.3 < p. and the other one (right) p. = 0.5927464 [25].
As discussed in [24], we clearly see the difference in the distribution: while for a value p = p,

the distribution is a power law, for a value p < p, it is an exponential distribution.

4.5 Results

As we have seen in this section, the Cont-Bouchaud model is capable of generating time-series
that look like actual asset prices time series. Looking closer at the statistics of the model,
we note that, by changing the value of the parameters, it can generate returns from both a
Gaussian distribution and a fat-tailed distribution. A distribution generate from the model
with a large value of the activity probability (close to 0.5) will have a lack of kurtosis while a
small a gives fat tails (excess of kurtosis). For a small a, we also find that the distribution is
a power law. For a specific value a* = 0.1636, the distribution has a kurtosis of 3, perfectly

characterizing a Gaussian distribution.
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4.6 Extensions

The Cont-Bouchaud model represents the basis of percolation theory applied to financial
modeling. However, many extensions to this model have been discussed since then. Some
extensions focus on changing the relationship between the price change and the difference
between supply and demand. For example, in [7] Chakraborti considers the relative price
change to be proportional to the “relative” difference of demand and supply. Furthermore, in
[8], the authors assume different assumptions about the probabilities a and p. An interesting
approach [26] is also to allow the activity probability a to vary in function of the price
level (changing it proportionally to the last price change) to allow the activity reflecting the
behaviour of traders.

In this project, time constraints meant we were not able to discuss them all, but we
made their further hypothetical implementation as easy as possible. Since the basis of these
models are the same as the Cont-Bouchaud model, we can reutilize al the code written for
the purpose of this project and easily insert some extensions to it in the Model class (see

next section for a presentation of the class design).
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5 Implementation: the class design

This section describes the Java implementation of the models and analysis code.
For the purpose of this project we decided to implement the model in Java. The Java lan-
guage offers a good object-oriented abstraction and makes it easy to represent entities by

classes and objects. Also, computation is fast.

For representing percolation models, we first needed an abstract type defining the lattice.
Then, we also needed an abstract type to represent each site of the lattice, as a cell.
Given that, we then had to design a Cell class and a Lattice class capable of generating
Cell and Lattice objects respectively. Basically, a Lattice is made of L? Cells (L being
the size of an edge of the lattice). A Cell has some attributes being its coordinates (i, j) on
the lattice, its status (empty or occupied) and its cluster label. It is important to notice that
when it is first created the Cell is defined by default as empty and, since it does not belong
to any cluster yet, its cluster value is set as —1 by default.
Similarly, a Lattice has some particular attributes which are its size N (defined as the length
of the edge of the lattice) and the probability of each cell composing the lattice to be occu-
pied.
Then, since the main purpose of lattices in the Cont-Bouchaud model is to generate clusters
formed by groups of neighbor cells, we have to be able to retrieve cluster sizes from a popu-
lated lattice. We thus need a Clusters class that, given a populated Lattice made of Cells,
searches for clusters in the lattice and then generates a set of cluster sizes. The algorithm
implemented to search for clusters is the Hoshen-Kopelman algorithm we discussed in the
first section.
Given a Clusters object defining a set of cluster sizes, we can eventually define the Cont-
Bouchaud model through the creation of a ContBouchaud class. The ContBouchaud class
allows us to create ContBouchaud objects that compute a one-step price return based on
the Cont-Bouchaud model definition, given a cluster set.

Then, it seems logical to create a Model class in which we can define and implement models
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based on the Cont-Bouchaud basic model (from the classic Cont-Bouchaud model to further
extensions of this model but nevertheless based on it). Through the Model class, we can
define different time steps from a Cont-Bouchaud model for instance and generate returns
for a given number of experiments.

Finally, in a Functions class, we integrate all the functions that we have been using through
the project in order to perform some simulations or test the model.

The entry point to the code is through a Project class containing the main method where

we can create Model objects and perform simulations on them.
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Figure 17: Class diagram
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6 Conclusion

In this project we presented and implemented the Cont-Bouchaud model for financial mod-
eling based on percolation theory.

The model is capable of generating time-series that look like actual asset prices time series.
The distribution of returns generated with the model can be both Gaussian (assuming a large
activity) or be a power law (assuming a small activity). The results we find from both pure
percolation theory and the Cont-Bouchaud model are in accordance with those found in the
literature insuring the correctness of our program.

Overall, the program allows a fast computation and offers a simple basis for developing vari-
ous extensions to the model on. Some extensions, for example, would include models capable
of interpreting the behaviour of traders allowing the activity to change in function of the
price level.

The Cont-Bouchaud model, unless most of agent-based financial models, gives a simple rep-
resentation of the market and only requires a few parameters. However, focusing on the
agents instead of the price itself (such as a geometric Brownian motion for representing price
fluctuations) implies having to model the whole market in order to generate a change in
price. This technique, even if closer to reality and less abstract than pure price-based model,

is slower.
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Appendix

A Java code

In this appendix, we list all the Java code written in order to implement the Cont-Bouchaud

model for the purpose of this project. The code can be downloaded from my website:

http://www.ddeville.me

A.1 Cell.java

VT

x Defines Cell objects that are formed by a pair of numbers representing
* the coordinates of a cell in the lattice

* @author Damien Deville

*

*/
public class Cell
{
private int i ; // The i—coordinate of the cell
private int j ; // The j—coordinate of the cell
private boolean status ; // If the cell is defined as occupied (true) or empty (false)

private int clusterLabel ; // The label of the cluster that the cell belongs to

Vaix:

x Constructor definition

* @param i: The i—coordinate of the cell
* @param j: The j—coordinate of the cell

* @param status: the status of the cell (true = occupied, false = empty)

*/
public Cell(int i, int j, boolean status)
{
setI (i) ;
setJ(j) ;
setStatus (status) ;
setClusterLabel (—1) ; // Initially , the cell belongs to no cluster
}
VAT

x Constructor definition: if the user does mnot want to specify the status,
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* we define the cell as empty
* @param 1i: The i—coordinate of the cell

* @param j: The j—coordinate of the cell

*/
public Cell(int i, int j)
{
setI (i) ;
setJ(j) ;
setStatus (false) ;
setClusterLabel (—1) ;
}
VAT

* Returns true if two coordinates are equal, otherwise returns false
* @param cell: the Cell object we want to compare it to

* @return true if the two objects are equal, otherwise false

*/
public boolean equalsTo(Cell cell)
{
if (i = cell.getl() && j = cell.getJ())
return true ;
else
return false ;
}
VAT

* Get the i—coordinate of the cell

* @return the i—coordinate of the cell

*/
public int getI()
{
return i ;
}
Vaix:

x Get the j—coordinate of the cell

% @return the j—coordinate of the cell
*/
public int getJ()

{

return j ;
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74 Vit

75 * Get the status of the cell (occupied or empty)
76 * @return the status of the cell (occupied = true or empty = false)
7 x/

78 public boolean getStatus ()

79 {

80 return status ;

81 }

82

83 VAT

84 * Get the label of the cluster that the cell belongs to
85 * @return the label of the cluster that the cell belongs to
86 */

87 public int getClusterLabel ()

88 {

89 return clusterLabel ;

90 }

91

92 VAT

93 * Set the i—coordinate of the cell

94 * @param 1i: the i—coordinate of the cell

95 x/

96 private void setl(int i)

97 {

98 this.i =1 ;

99 }

100

101 Jxx

102 x Set the j—coordinate of the cell

103 * @param j: the j—coordinate of the cell

104 */

105 private void setJ(int j)

106 {

107 this.j = j ;

108 }

109

110 VAT

111 x Set the status of the cell (occupied or empty)
112 * @param status: the status of the cell (true = occupied, false = empty)
113 */

114 public void setStatus(boolean status)

115 {

116 this.status = status ;
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VAT

* Set the label of the clus

* @param clusterLabel: the

*/
public void setClusterLabel (

{

this.clusterLabel clust

ter that the cell

label

belongs to

of the cluster that the cell belongs to
int clusterLabel)

erLabel ;

A.2 Lattice.java

Listing 6: Cell.java

import java.util.Random;

/%%

* Defines lattice objects

* @author Damien Deville

*
*/
public class Lattice
{
private final boolean OCCUP = true ; // defines an occupied cell
private final boolean EMPTY = false ; // defines a non—occupied cell
private int N ; // size of the lattice
private double prob ; // probability of an occupied node
private Cell [][] lattice ; // array that represents the lattice
private Random random ; // random seed generator
Vix:
* Constructor definition , creates an empty lattice of size N
* All the sites are defined like empty
* @param N : the lattice size
*/
public Lattice(int N)
{
setSize (N) ; // we set the lattice size

lattice = new Cell [N][N]

i // we create the actual lattice
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for(int i = 0
{
for (int j
{
lattice

* Constructor definition ,

* If the randomly generated number is greater than p,

* lattice to be

* @param N: the
* @param prob:
*/
public Lattice (i
{

random = new

setSize (N) ;
setProb (prob)

lattice = new Cell [N][N]

for(int i =0

{

for (int j

{

if (random .nextDouble () <= prob)

latt
else

latt

Vaix:

x Constructor definition ,

* for a particular random seed.

* sel the given
* @param N: the
* @param prob:
* @param seed :
*/

public Lattice (i

;1 <N 5 i4+4) // we populate it given the probability
=0; j <N j++
[1][j] = new Cell(i,j ,EMPTY) ;

creates a lattice

we set the given cell of the

occupied, otherwise we set it as empty

lattice size

the probability of each node being occupied
nt N, double prob)
Random ()

// we set the
g // we set the probability

i // we define a random object

lattice size

i // we create the actual lattice

; 1 <N 5 i4+4) // we populate it given the probability

=0 ; j <N j++)

// we set the cell to be occupied

ice[i][j] = new Cell(i,j,O0CCUP) ;
// we set the cell to be empty
ice[i][j] = new Cell(i,j ,EMPTY) ;

creates a lattice
If the randomly generated number is greater than p,
cell of the otherwise we set

lattice to be occupied, it as empty

lattice size
the probability of each node being occupied
a particular seed for the random generator

nt N, double prob, long seed)
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70 {

71 random = new Random(seed) ; // we define a random object given the particular seed
72 setSize (N) ; // we set the lattice size

73 setProb (prob) ; // we set the probability

74 lattice = new Cell [N][N] ; // we create the actual lattice

75 for(int i =0 ; i <N ; i++) // we populate it given the probability

76 {

7 for(int j =0 ; j <N ; j++)

78 {

79 if (random.nextDouble () <= prob) // we set the cell to be occupied

80 lattice [i][j] = new Cell(i,j,OCCUP) ;

81 else // we set the cell to be empty

82 lattice [i][]j] = new Cell(i,j ,EMPTY) ;

83 }

84 }

85 }

86
87
88
89 Vi

90 * Get the lattice size

91 * @return the lattice size
92 x/

93 public int getSize ()

94 {

95 return N ;

96 }

97
98 Jxx

99 * Get the probability

100 * @return the probability
101 */

102 public double getProb ()
103 {

104 return prob ;

105 }

106
107 VAT

108 * Get the cell at the i,j coordinates in the lattice
109 * @param 1i: the i—coordinate in the lattice

110 * @param j: the j—coordinate in the lattice

111 * @return the cell corresponding to these coordinates

112 */
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113 public Cell getCell(int i, int j)
114 {

115 return lattice [i][j] ;

116 }

117

118 o

119 * Set the lattice size

120 * @param N: the lattice size

121 */

122 private void setSize (int N)

123 {

124 this . N = N ;

125 }

126

127 Jxx

128 x Set the probability

129 * @param p: the probability

130 */

131 private void setProb (double prob)
132 {

133 this.prob = prob ;

134 }

135

136 VAT

137 * Set a cell to the defined position in the lattice
138 * @param cell: the cell we want to set
139 */

140 public void setCell (Cell cell)
141 {

142 int i = cell.getl() ;

143 int j = cell.getJ() ;

144 lattice [i][j] = cell ;

145 }

146

147 Jxx

148 * Loop through the lattice and plot it. Plot a ”"+«” if the cell is occupied and
149 * an empty space if it’s empty
150 */

151 public void plotLattice ()

152 {

153 for(int i =0 ; i <N ; i++4)
154 {

155 for(int j =0 ; j <N ; j++)
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156 {

157 if(lattice[i][j]. getStatus () == OCCUP)

158 System.out.print (7*”) ; // if the cell is occupied, we draw a *

159 else

160 System.out.print (7.”) ; // if the cell is empty, we draw an empty space
161 }

162 System.out.println (””) ;

163 }

164 }

165 |}

Listing 7: Lattice.java

A.3 Clusters.java

1 |import java.util.ArrayList;

2 |import java.util.Collection ;

3 |import java.util.Enumeration ;

4 | import java.util.Hashtable ;

5

6 | /xx

7 x Defines clusters objects representing the clusters in

8 * a populated lattice

9 * @author Damien Dewville

10 *

11 */

12 | public class Clusters

13 | {

14 private final boolean OCCUP = true ; // defines an occupied cell
15 private final boolean EMPTY = false ; // defines an empty cell
16 private Lattice lattice ; // defines a lattice

17 // contains the various labels for the clusters

18 private Hashtable<Integer ,Integer> labels ;

19 // contains the number of cells for each cluster

20 private Hashtable<Integer ,Integer> clusters ;

21 private int labellndex ; // value of the first label
22

23 Vit

24 * Constructor definition

25 * @param lattice: the lattice we are analysing clusters on

26 */

27 public Clusters(Lattice lat)
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lattice = lat ;

labellndex =1 ; // we set the wvalue of the first label to be 1

// we create a new hashtable for the cluster labels

labels = new Hashtable<Integer ,Integer >() ;

// we create a new hashtable for the cluster numbers

clusters = new Hashtable<Integer ,Integer >() ;

// we first assign raw cluster labels to the occupied cells
assignLabels () ;

// we then link the clusters wusing the root label for each linked cluster

updateLabels () ;

Vir:

* Get the cluster number in the lattice

* @return the cluster number in the lattice
*/

public int getClusterNumber ()

{

return clusters.size () ; // the cluster number

VAT

* Get an array populated with the cluster sizes in the lattice
* @return an array of cluster sizes

*/

public Integer [] getClusterSizes ()

{

Collection<Integer> ¢ = clusters.values() ;
Integer [] clusterSizesArray = (Integer[])c.toArray(new Integer[c.size ()])

return clusterSizesArray ;

VAT

* Print the cluster number

*/

public void printClusterNumber ()

{

System.out. println (clusters.size()) ;
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71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

VAT
* Print the size of each cluster in the lattice
*/

public void printClusterSizes ()

{

Enumeration<Integer> k = clusters.keys() ;
while (k.hasMoreElements())
{

int key = (int)k.nextElement () ;

System.out.println ((int)clusters.get(key));

VAT
* Span the lattice once and assign cluster labels to each occupied cell.

* However, some cluster can still be defined by more than one label.

*/
private void assignLabels ()
{
for(int i =0 ; i < lattice.getSize() ; i++) // we span the lattice
{
for(int j =0 ; j < lattice.getSize() ; j++)
{
Cell cell = lattice.getCell(i,j) ; // we get the current cell in the lattice
if (cell.getStatus () = OCCUP) // we check if the cell is occupied
checkTopAndLeftNeighbors(cell) ; // we check its top and left neighbors
} // to assign the right label to the cell
}
}
Vix:

* Span the lattice once and update the labels for the clusters that are still

* defined by more than one label.

* For each label, it checks if it is the root one and if not, it looks for the root one.
*/

private void updateLabels ()

{

for(int i = 0 ; i < lattice.getSize() ; i++) // we span the lattice

{
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114 for(int j = 0 ; j < lattice.getSize() ; j++)

115 {

116 Cell cell = lattice.getCell(i,j) ; // we get the current cell in the lattice
117 if (cell.getStatus () = OCCUP) // we check if the cell is occupied

118 {

119 // we find the root label corresponding to the cell

120 int label = findRootLabel(cell) ;

121 cell .setClusterLabel (label) ; // we set this new label to the cell
122 // if the clusters hashtable does mot already contain this label

123 if (! clusters.containsKey (label))

124 clusters.put(label, 1) ; // we add it to it

125 else // if it already contains it, we increment its size by 1

126 clusters.put(label, clusters.get(label) + 1) ;

127 }

128 }

129 }

130 }

131

132

133 VAT

134 * For each occupied cell, check the cells on top and left of the current cell.
135 * There are j cases:

136 * 1: both cells are empty, we then have to create a new cluster label and apply it to
137 the current cell

138 * 2: only one cell is empty, we then have to apply the label of the cluster the
139 non—empty cell belongs to to the current cell

140 * 3: both cells are occupied and have the same cluster label: we then apply this cluster
141 label to the current cell

142 * 4: both cells are occupied but have different cluster labels: we then apply the
143 smallest label to the current cell and define a union between the labels

144 * @param cell: the current cell we are checking

145 x/

146 private void checkTopAndLeftNeighbors(Cell cell)

147 {

148 Cell cell_top ; // cell at the top of the current cell

149 Cell cell_left ; // cell at the left of the current cell

150

151 // we make sure that cell_top is actually not outside of the lattice

152 if(cell.getI() > 0) // if it is actually INSIDE the lattice

153 cell_top = lattice.getCell(cell.getlI()—1, cell.getJ()) ; // we get the actual cell
154 else // if it is actually OUTSIDE the lattice

155 // we define it as an empty cell with coordinates (—1,—1)

156 cell_top = new Cell(—1, —1, EMPTY) ;
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194
195
196
197
198
199

// we make sure that cell_left is actually not outside of the lattice

if(cell.getJ() > 0) // if it is actually INSIDE the lattice
cell_left = lattice.getCell(cell.getI(), cell.getJ()—1) ; // we get the actual cell
else // if it is actually OUTSIDE the lattice

// we define is as an empty cell with coordinates (—1,—1)

cell_left = new Cell(—1, —1, EMPTY) ;

// we get the cluster label to which the cell at the top belongs
int topClusterLabel = cell_top.getClusterLabel () ;

// we get the cluster label to which the cell at the left belongs
int leftClusterLabel = cell_left.getClusterLabel() ;

// 1st case:

// if both cell_-top and cell_left are empty, we have to create a new cluster label

if (cell_top.getStatus () = EMPTY && cell_left .getStatus () = EMPTY)

{
cell .setClusterLabel (labellndex) ; // we set the cluster label to be labellndex
// we add this cluster label to the labels hashtable. Note that the key
// and the value is the same since this label is mot linked to another one yet
labels .put(labellndex, labellndex) ;
labelIndex++ ; // we increment the labellndex by 1

// 2nd case:
// if only one of both cell is empty, we have to set the cell cluster label same as
// the mon—empty cell’s one
else if(cell_-top.getStatus () = EMPTY) // if cell_top is empty
// we find the root label and set it as cell_left’s label
cell.setClusterLabel (find (leftClusterLabel)) ;
else if(cell_left.getStatus() = EMPTY) // if cell_left is empty
// we find the root label and set it as cell_top’s label
cell .setClusterLabel (find (topClusterLabel)) ;

// 8rd case:
// if both cell cluster labels are equal, we set the cell cluster label same as
// this cluster label
else if (topClusterLabel = leftClusterLabel)

// we find the root label and set it as cell_top and cell_left’s label

cell .setClusterLabel (find (topClusterLabel))

)

// 4th case:
J// if cell_-top and cell_left belong to different clusters, we set the current cell’s

20




200 // label as the smallest label

201 // we also have to update the labels relation in the labels hashtable

202 // in the label hashtable, if one cluster is defined by only one label, the key entry
203 // (label) will be the same as its value

204 // if one cluster is defined by more than one label, say 2, the key entry will be the
205 // biggest label and the value the smallest

206 else

207 {

208 // we look for the smallest label between both

209 int smallLabel=(topClusterLabel<leftClusterLabel)?topClusterLabel:leftClusterLabel
210 // we look for the biggest label between both

211 int bigLabel=(topClusterLabel<leftClusterLabel)?leftClusterLabel:topClusterLabel ;
212 // we set the smallest label for the current cell

213 cell .setClusterLabel (smallLabel) ;

214

215 // if the smallest label is actually smaller than the wvalue corresponding
216 // to the biggestLabel key

217 if (smallLabel < labels.get(bigLabel))

218 // we update the key and label to materialize the link

219 labels .put(find (labels.get(bigLabel)), find(smallLabel)) ;

220 // if the smallest label is actually bigger than the wvalue corresponding
221 // to the biggestLabel key

222 else

223 // we update the key and label to materialize the link

224 labels .put(find (smallLabel), find(labels.get(bigLabel))) ;

225 }

226 }

227

228

229 VAT

230 * Find the smallest ”"good” label given a ”bad” label

231 * @param label: the bad label we want to find the good label for

232 * @return the good label

233 */

234 private int find (int label)

235 {

236 int initLabel = label ; // we store the original bad label

237 // while the label is not good, we loop through the links

238 while (labels.get (initLabel) != initLabel)

239 initLabel = labels.get(initLabel) ;

240 // the walue of initLabel is mow the ”good” label

241

242 // we loop through the labels from the bad one another time

o1
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244
245
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247
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257
258
259
260
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262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

while(labels.get (label) != label)

{
int temp = labels.get(label) ; // we get the current label at each loop step
// we set the wvalue of each current label to the ”"good” label
labels .put(label, initLabel) ;
label = temp ;
}
return initLabel ; // we return the good label
}
VAT

* Find the root label for each cluster label from the labels hashtable.

* The root label is defined to be the smallest label among all labels constituing a
* common cluster

* @param cell: the cell we are checking the cluster label for

* @return the root cluster label

*/
private int findRootLabel(Cell cell)
{
int labelNum = cell.getClusterLabel () ; // we get the cluster label of the cell
while (labels . get (labelNum) != labelNum) // we loop through the labels hashtable
{ // until we reach the root label
labelNum = labels.get (labelNum) ;
}
return labelNum ; // we return the root label for this cell
}
VAT

x Check if percolation (a top—bottom spanning cluster) occurs in the lattice
* @return true if there is percolation, false if mnot
*/
public boolean checkPercolation ()
{
// we check if there is the same label on the top and bottom rows of the lattice
// arraylist that contains all top—row cells
ArrayList<Integer> top = new ArrayList<Integer >() ;
// arraylist that contains all bottom—row cells
ArrayList<Integer > bottom = new ArrayList<Integer >() ;
// arraylist that contains all left—column cells
ArrayList<Integer> left = new ArrayList<Integer >() ;

// arraylist that contains all right—column cells
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286 ArrayList<Integer> right = new ArrayList<Integer >() ;

287 // we loop through the columns of the lattice

288 for(int i = 0 ; i < lattice.getSize() ; i++)

289 {

290 // we get each cell from the top row

291 Cell topCell = lattice.getCell (0,1) ;

292 // we get each cell from the bottom row

293 Cell bottomCell = lattice.getCell(lattice.getSize()—1,i) ;

294 if (topCell.getStatus () = OCCUP) // if the top cell is occupied

295 top.add(topCell.getClusterLabel ()) ; // we add it to the top arraylist
296 if (bottomCell.getStatus () == OCCUP) // if the bottom cell is occupied
297 bottom .add (bottomCell. getClusterLabel ()) ; // we add it to the bottom arraylist
298 }

299 // we remove from the top arraylist all elements that are not in bottom

300 top.retainAll (bottom) ;

301 if (top.size() > 0) // we check if there are still elements in the arraylist
302 return true ;

303 // if there is not a spanning cluster from top to bottom,

304 // we check if there is one from left side to right side

305 // we loop through the rows of the lattice

306 for(int j = 0 ; j < lattice.getSize() ; j++)

307 {

308 // we get each cell from the left column

309 Cell leftCell = lattice.getCell(j,0) ;

310 // we get each cell from the right column

311 Cell rightCell = lattice.getCell(j,lattice.getSize()—1) ;

312 if(leftCell.getStatus () = OCCUP) // if the left cell is occupied
313 left .add(leftCell.getClusterLabel ()) ; // we add it to the left arraylist
314 if (rightCell.getStatus () = OCCUP) // if the right cell is occupied
315 right .add(rightCell.getClusterLabel()) ; // we add it to the right arraylist
316 }

317 // we remove from the left arraylist all elements that are mot in right

318 left .retainAll (right) ;

319 if(left.size() > 0) // we check if there are still elements in the arraylist
320 return true ;

321 return false ; // if there is mo spanning cluster , we eventually return false
322 }

323 |}

Listing 8: Clusters.java
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A.4 ContBouchaud.java

import java.util.Random;

/%%

* Create a ContBouchaud objects representing as the return
* for one time step computed from the Cont—Boucaud model
* @author Damien Dewville
*

«/

public class ContBouchaud

{

private Random random ;

private double a ; // the probability that a cluster be active
private double lambda ; // the scaling factor

private double priceReturn ; // the price change given by the model

VAT

* Constructor definition .

* Compute the price return with the Cont—Bouchaud model.

* the cluster sizes and then compute the price return.

* @param latticeSize: the size of the lattice

* @param prob: the probability that a site in the

* @param a: the probability that a cluster be active

* @param lambda :
*/
public ContBouchaud (int

{

the scaling factor in the

latticeSize , double

setProb (a) ; active

setLambda (lambda) ;

// we set the

double sumBuy = 0 ;
double sumSell = 0 ; // we assume the sum of selling

random = new Random ()

// we create a new lattice given the parameters

Lattice lat = new Lattice(latticeSize , prob) ;

// we check the clusters in this lattice

Clusters

// we get the
Integer []

clusters = new Clusters(lat) ;

size of each cluster

clusterSizes = clusters.getClusterSizes () ;

for(int i =0 ; i < clusterSizes.length ; i++)

o4

lattice

// we assume the sum of buying clusters is

clusters

// we loop through the

First populate a lattice ,

be occupied

(buys or sells)
Cont—Bouchaud model

prob, double a, double lambda)

cluster probability

// we set the scaling factor

initially zero

is initially zero

i // we define a new random object

clusters

(buys or sells)

find
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// we get a new uniformly generated random number
double rnd = random.nextDouble() ;
if(rnd < a) // if the random number is less than a (probability a)
sumSell += clusterSizes[i] ; // we assume the cluster is selling
else if(rnd > 1-a) // if the random number is greater than I—a (probability a)
sumBuy += clusterSizes|[i] ; // we assume the cluster is buying
// else the cluster sleeps
}
// the price return 1is then given by the scaled difference

priceReturn = (sumBuy—sumSell)/lambda ;

Vit

x* Constructor definition .

* Compute the price return wusing the Cont—Bouchaud model assuming we already have an

* array containing the cluster sizes. This constructor is useful when we want to

* compute wvarious time steps from the same lattice pattern (for computation efficiency ).
* @param latticeSize: the size of the lattice

* @param prob: the probability that a site in the lattice be occupied

x @param a: the probability that a cluster be active (buys or sells)

* @param lambda: the scaling factor in the Cont—Bouchaud model

*/

public ContBouchaud(double a, double lambda, Integer[] clusterSizes)

{

setProb (a) ; // we set the active cluster probability

setLambda (lambda) ; // we set the scaling factor

double sumBuy = 0 ; // we assume the sum of buying clusters is initially zero
double sumSell = 0 ; // we assume the sum of selling clusters is initially zero
random = new Random() ; // we define a new random object

for(int i = 0 ; i < clusterSizes.length ; i++) // we loop through the clusters
{
// we get a new uniformly generated random number
double rnd = random.nextDouble() ;
if(rnd < a) // if the random number is less than a (probability a)
sumSell += clusterSizes[i] ; // we assume the cluster is selling
else if(rnd > 1-a) // if the random number is greater than I—a (probability a)
sumBuy += clusterSizes|[i] ; // we assume the cluster is buying
// else the cluster sleeps

}

// the price return 1is then given by the scaled difference
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124
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127

priceReturn = (sumBuy—sumSell)/lambda ;

Vix:

* Get the price return computed with the Cont—Bouchaud model
* @return the price return

*/

public double getPriceReturn ()

{

return priceReturn ;

Vit

x Set the probability that a cluster be active (buys or sells)

* @param a: the probability that a site is active (buys or sells)
*/

private void setProb(double a)

{

this.a = a ;

VAT
x Set the scaling factor defined in the Cont—Bouchaud model

* @param lambda: the scaling factor

*/
private void setLambda(double lambda)
{
this.lambda = lambda ;
}
Jxx

x Get the probability that a cluster be active (buys or sells)

x @return the probability that a cluster is active (buys or sells)
*/

public double getClusterProb ()

{

return a ;

Vit
* Get the scaling factor defined in the Cont—Bouchaud model

* @return the scaling factor

26




128 %/

129 public double getLambda()
130 {

131 return lambda ;

132 }

133 |}

Listing 9: ContBouchaud.java

A.5 Model.java

1 | /xx

2 * Implement particular models from the Cont—Bouchaud setting
3 * @author Damien Deville

4 *

5 x/

6 | public class Model

7 |4

8 private int numSteps ; // the number of time steps
9 private double initialPrice ; // the initial asset price
10

11 VAT

12 * Constructor definitio

13 * @param numSteps: the number of time steps in the model
14 * @param initialPrice: the initial asset price

15 */

16 public Model(int numSteps, double initialPrice)

17 {

18 setNumSteps (numSteps) ; // we set the number of steps
19 setInitialPrice (initialPrice) ; // we set the initial asset price
20 }

21

22 VAT

23 * Set the number of time steps

24 * @param numSteps: the number of time steps

25 */

26 public void setNumSteps(int numSteps)

27 {

28 this.numSteps = numSteps ;

29 }

30

31 VAT
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*

*

*/

Set the initial asset price

@param initialPrice: the initial asset price

public void setInitialPrice (double initialPrice)

{

*

*/

this.initialPrice = initialPrice ;

Generate returns from the Cont—Bouchaud model assuming the
lattice does mot change at each time step (more efficient)
and that we already have this lattice (inputed in the method)
@param a: the activity probability

@param lambda: the price scaling factor

@param clusterSizes: array containing cluster sizes

Q@return array containing returns from the model

public double[] classicConstantContBouchaud (double a,double lambda, Integer [] clusterSizes)

{

*

*/

double [|] returns = new double[numSteps] ; // we define an array to contain the returns
ContBouchaud priceReturn ; // ContBouchaud object that models one return from the model
for(int i = 0 ; i < numSteps ; i++) // we loop as many times as the number of steps
{

// get a price return from the Cont—Bouchaud model

priceReturn = new ContBouchaud(a, lambda, clusterSizes) ;

returns [i] = priceReturn.getPriceReturn() ;

}

return returns ;

Generate returns from the Cont—Bouchaud model assuming the
lattice does mot change at each time step (more efficient)
@param latticeSize: the size of the lattice

@param prob: the occupancy probability

@param a: the activity probability

@param lambda: the price scaling factor

@return array containing returns from the model

public double[] classicConstantContBouchaud (int latticeSize , double prob, double a,

double lambda)

Lattice lat = new Lattice(latticeSize , prob) ; // define a new lattice
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Vir:

*
*
*
*

*

*

*/

Clusters clusters = new Clusters(lat) ; // we check the clusters in this lattice

Integer [| clusterSizes = clusters.getClusterSizes() ; // we get the size of clusters

double || returns = new double[numSteps] ; // we define an array to contain the returns
ContBouchaud priceReturn ; // ContBouchaud object that models one return from the model
for(int i = 0 ; i < numSteps ; i++) // we loop as many times as the number of steps
{

// get a price return from the Cont—Bouchaud model

priceReturn = new ContBouchaud(a, lambda, clusterSizes) ;

returns[i] = priceReturn.getPriceReturn() ;

}

return returns ;

Generate returns from the Cont—Bouchaud model assuming the
lattice changes at each time step

@param latticeSize

@param prob

@param a

@param lambda

Qreturn

public double[] classicContBouchaud (int latticeSize , double prob, double a, double lambda)

{

VAT
*
*

*

*/

double || returns = new double[numSteps] ; // we define an array to contain the returns
ContBouchaud priceReturn ; // ContBouchaud object that models one return from the model
for(int i = 0 ; i < numSteps ; i++) // we loop as many times as the number of steps
{

// get a price return from the Cont—Bouchaud model

priceReturn = new ContBouchaud(latticeSize , prob, a, lambda) ;

returns [i] = priceReturn.getPriceReturn() ;

}

return returns ;

Generate the price time series from an initial price based on the returmns
@param initialPrice: the initial price

Q@return the price time series

public double[] generateTimeSeries(double[] priceReturns)

{
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double || timeSeries = new double[numSteps] ; // we define an array to contain prices

timeSeries [0] = initialPrice ; // the first wvalue is the initial price

for(int i = 0 ; i < numSteps—1 ; i++) // we loop as many times as the number of steps
timeSeries [i+1] = timeSeries[i] + priceReturns[i] ; // generate prices

return timeSeries ;

Listing 10: Model.java

A.6 Functions.java

import java.util.Enumeration;

import java.util.Hashtable;

Vexs

x Defines functions used im order to get some results
* from the model

* @author Damien Deville

*

«/

public class Functions

{

VAT
* Constructor definition
*/

public Functions ()

{

* Get the cluster size distribution for a given probability p

* print out frequency of each cluster size in the lattice

* @param p: the probability p

* @param latticeSize: the lattice size

* @param numEzp: number of experiments

*/

public void clusterSizeDistribution (double p, int latticeSize , int numExp)

{

// HashTable that will contain the cluster size as a key and
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// the frequency as the corresponding wvalue

Hashtable<Integer ,Double> nums = new Hashtable<Integer ,Double>() ;
// we loop as many times as number of experiments

for(int n = 0 ; n < numExp ; n++)

{

Lattice lat = new Lattice(latticeSize ,p) ; // create new lattice
Clusters clusters = new Clusters(lat) ; // create new clusters
Integer [| sizes = clusters.getClusterSizes() ; // get cluster sizes

// loop as many times as the sizes of cluster sizes array
for(int i = 0 ; i < sizes.length ; i++4)
{
// if the cluster size already exzists as a key in the hashtable
if (nums. containsKey (sizes[i]))
// we increment the value (frequency) by I
nums. put (sizes [i], nums.get(sizes[i])+1) ;
else // if it does not exist

nums. put (sizes[i], 1.0) ; // we create a new hashtable entry

}
// we then print out the averaged frequency for each cluster size
Enumeration<Integer> k = nums. keys () ;
while (k.hasMoreElements())
{
int key = (int)k.nextElement () ;
double value = (double)nums. get (key) ;
System.out. println (key + ”.” 4+ value/(double)numExp);

* Compute returns from the Cont—Bouchaud model given a probability a and
*x summing over all clusters sizes for all probabilities p (step 0.01)
* between 0.01 and 0.59. Write down the returns in a text file
* @param a: the probability a
* @param latticeSize: the lattice size
* @param numSteps: number of time steps
* @param numEzp: number of experiments
*/
public void returnsCBsumProb(double a, int latticeSize , int numSteps, int numExp)
{
String s = "output” ;
String ext = 7.txt” ;
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for(int j =1 ; j <= numExp ; j++) // loop as many times as number of experiments
{

String output = s + j + ext ; // create tzt file name

System.out.println (output) ;

Integer [] originalClusterSizes = new Integer [0] ;

for(int n =1 ; n <= 59 ; n++) // loop through all probabilities p

{

double proba = (double)n/100 ; // define the probability p

Lattice lat = new Lattice(latticeSize , proba) ; // create a new lattice
Clusters clusters = new Clusters(lat) ; // new clusters

Integer [| clusterSizes = clusters.getClusterSizes() ; // get all cluster sizes

// create a mew array containing previous and new cluster sizes
Integer [] newClusterSizes = new Integer[originalClusterSizes.length +
clusterSizes.length] ;
// we add to it all previous clusters sizes
for(int i = 0 ; i < originalClusterSizes.length ; i++)
newClusterSizes[i] = originalClusterSizes[i] ;
// we add to it all new clusters sizes
for(int i = 0 ; 1 < clusterSizes.length ; i++4)
newClusterSizes [i+originalClusterSizes.length| = clusterSizes[i] ;
originalClusterSizes = newClusterSizes ;
}
// given the mnew list of cluster sizes, we get the returns from the model
Model model = new Model (numSteps, 1) ;
double [| priceReturns=model. classicConstantContBouchaud (a,1l,originalClusterSizes)
FileOutput out = new FileOutput (output) ; // create tzt file
// for each time step, we write the result as a new line in the tzt file
for(int i = 0 ; i < priceReturns.length ; i++)
{
out.writeDouble (priceReturns[i]) ;
out.writeNewline () ;

}

out.close () ; // close the text file

Compute returns from the Cont—Bouchaud model given a probability a and
a probability p. Write down the returns in a text file

@param p: the probability p

@param a: the probability a

@param latticeSize: the lattice size
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* @param numSteps: the number of time steps
* @param numFEzp: the number of experiments we average out
*/

public void returnsCBoneProb(double p,double a,int latticeSize ,int numSteps,int numExp)

{

String s = ”"output” ;
String ext = 7 .txt” ;
for(int n = 1 ; n <= numExp ; nt++) // loop as many times as number of experiments

{

String output = s + n + ext ; // create tzt file name
System.out.println (output) ;
FileOutput out = new FileOutput (output) ; // create tzt file
Model model = new Model (numSteps, 1) ; // create a new model object
// we get the returns from the Cont—Bouchaud model
double [|] priceReturns = model. classicConstantContBouchaud (latticeSize , p, a, 1) ;
// for each time step, we write the result as a new line in the txzt file
for(int i = 0 ; i < numSteps ; i++)
{

out.writeDouble (priceReturns[i]) ;

out.writeNewline () ;

}

out.close () ; // close the text file

* Compute prices from the Cont—Bouchaud model given a probability a and
* a probability p. Write down the returns in a text file

* @param p: the probability p

% @param a: the probability a

* @param latticeSize: lattice size

* @param numSteps: number of time steps

* @param numFExp: number of experiments

* @param initialPrice: the initial asset price

* @param lambda: the price scaling factor

*/

public void timeSeriesCBoneProb (double p, double a, int latticeSize , int numSteps,

int numExp, double initialPrice , double lambda)

String s = ”"output” ;
String ext = 7 .txt” ;
for(int n = 1 ; n <= numExp ; n++) // loop as many times as number of experiments

{
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160 String output = s + n + ext ; // create tzt file name

161 System.out. println (output) ;

162 FileOutput out = new FileOutput(output) ; // create tzt file

163 Model model = new Model (numSteps, initialPrice) ; // create a new model object
164 // we get the returns from the Cont—Bouchaud model

165 double[] priceReturns = model.classicConstantContBouchaud (latticeSize ,p,a,lambda) ;
166 // we genmerate a time—series from the returns

167 double || timeSeries = model. generateTimeSeries(priceReturns) ;
168 // for each time step, we write the result as a new line in the tzt file
169 for(int i = 0 ; i < numSteps ; i++)

170 {

171 out.writeDouble(timeSeries[i]) ;

172 out.writeNewline () ;

173 }

174 out.close () ; // close the text file

175 }

176 }

177

178

179 VAT

180 * Find the critical probability checking if percolation occurs in each lattice
181 * for each p. Average the results out of a number of trials

182 * @param latticeSize: the lattice size

183 * @param trials: number of trials

184 %/

185 public void findCriticProb (int latticeSize , int trials)

186 {

187 Lattice lat ; // define new lattice

188 double p ; // probability p

189 int probMesh = 100 ; // the probability mesh size

190 //long seed = 12818991921L ;

191 int [] results = new int [probMesh]| ; // array containing results

192 int count ;

193 for(int i = 1 ; i <= probMesh ; i++)

194 {

195 p = (double)i/probMesh ; // defines the probability p

196 count = 0 ;

197 // loop as many times as trials number

198 for(int j =0 ; j < trials ; j++)

199 {

200 System.out. println (” Trial .number:.” + j) ;

201 lat = new Lattice(latticeSize , p) ; // create a new lattice
202 Clusters clusters = new Clusters(lat) ; // get the clusters
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203 if (clusters.checkPercolation()) // check if percolation occurs
204 count++ ; // if percolation occurs, increase count by I
205 }

206 results [i—1] = count ;

207 System.out.println(p + ”.” + results[i—1]) ;

208 }

209 }

210

211

212 VAT

213 * Print the average cluster number for each probability p
214 * @param latticeSize: the lattice size

215 * @param numFEzxp: number of experiments to average out

216 x/

217 public void averageClusterNum (int latticeSize , int numExp)
218 {

219 for(double i =1 ; i <= 100 ; i++)

220 {

221 double prob =i / 100 ; // probability p

222 int sum = 0 ;

223 for(int j =0 ; j < numExp ; j++)

224 {

225 //long seed = 123189914592L ;

226 Lattice lat = new Lattice(latticeSize , prob) ;
227 Clusters clusters = new Clusters(lat) ;

228 sum += clusters.getClusterNumber () ;

229 }

230 System.out.println (prob + ”_.” + (double)sum/numExp) ;
231 }

232 }

233 | }

Listing 11: Functions.java
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